Сахарный диабет 1 типа новейшие исследования

Сахарный диабет 1 типа новейшие исследования thumbnail

Санофи представила результаты международного клинического исследования EDITION JUNIOR на Российской научно-практической конференции детских эндокринологов, которая прошла с 12 по 13 сентября в Санкт-Петербурге. Цель исследования: оценить применение базального инсулина последнего поколения Туджео СолоСтар® (инсулин гларгин 300 ЕД/мл) у детей с 6 лет и старше, которые имеют сахарный диабет и требуют лечения инсулином.1 В исследовании приняли участие 463 пациента в возрасте от 6 до 17 лет, среди которых были пациенты и из России.

В России отмечаются высокие темпы роста заболеваемости и распространённости сахарного диабета. По данным федерального регистра сахарного диабета, в РФ на 01.01.2019 г. на диспансерном учете состояло 4,58 млн человек с этим заболеванием. Среди них более 38 000 составляют пациенты с сахарным диабетом в возрасте до 18 лет.2

Особенностью сахарного диабета 1 типа у детей и подростков является большая вариабельность глюкозы в крови, чем у взрослых. Детский организм более чувствителен к инсулину, потребность в котором может быстро меняться. Важно постоянно поддерживать динамическое равновесие между гипогликемией и гипергликемией. Именно поэтому по мнению специалистов для данной возрастной группы особенно необходима современная инсулинотерапия, обеспечивающая имитацию физиологической секреции инсулина.

«В течение последних лет мы достигли значительного прогресса в лечении сахарного диабета у детей и подростков: появляются новые технологии управления заболеванием, совершенствуются подходы к самоконтролю, все шире применяются системы мониторирования показателей здоровья. Однако основой терапии сахарного диабета остается инсулинотерапия. Одной из целей лечения юных пациентов с сахарным диабетом является достижение максимально близкого к норме уровня углеводного обмена.

Достичь его непросто из-за необходимости соблюдения хрупкого баланса между оптимальным уровнем гликемии и риском гипогликемии. Появление нового поколения базальных аналогов инсулина, в том числе инсулина Туджео СолоСтар®, позволяет расширить наши возможности управления сахарным диабетом у детей и подростков», – отметила Петеркова В.А., академик РАН, профессор, д.м.н., научный руководитель Института Детской эндокринологии, заведующая кафедрой детской эндокринологии-диабетологии ФГБУ «НМИЦ эндокринологии» Минздрава России, Главный внештатный детский специалист эндокринолог Минздрава России.

Туджео СолоСтар® был одобрен к применению у пациентов 6 лет и старше в России в декабре 2019 года3 на основании данных открытого рандомизированного, контролируемого клинического исследования по сравнению инсулинов гларгин 300 ЕД/мл и гларгин 100 ЕД/мл у детей и подростков с сахарным диабетом 1 типа EDITION JUNIOR.4 Исследование проходило в течение 26 недель, и в нем приняли участие 463 пациента, в том числе пациенты из России. В группу пациентов, получавших инсулин гларгин 300 ЕД/мл, входили 73 пациента в возрасте

  • В группе препарата инсулина гларгин 300 ЕД/мл с режимом дозирования один раз в сутки к 26-й неделе было продемонстрировано сходное снижение уровня гликированного гемоглобина и глюкозы плазмы натощак от исходного уровня по сравнению с инсулином гларгин 100 ЕД/мл.
  • Частота возникновения гипогликемии (за сутки и в ночное время) у пациентов была сходна в группе инсулина гларгин 300 ЕД/мл и инсулина гларгин 100 ЕД/мл.

Процент пациентов, сообщивших о тяжелой гипогликемии, был численно ниже в группе терапии препаратом инсулин гларгин 300 ЕД/мл по сравнению с группой терапии инсулином гларгин 100 ЕД/мл (6% и 8,8% соответственно).

  • Доля пациентов с эпизодами гипергликемии, сопровождавшейся кетозом, была численно ниже в группе препарата инсулин гларгин 300 ЕД/мл по сравнению с группой инсулина гларгин 100 ЕД/мл (6,4% и 11,8% соответственно).
  • Для препарата инсулин гларгин 300 ЕД/мл не было выявлено каких-либо проблем безопасности в отношении нежелательных явлений и стандартных параметров безопасности. Выработка антител отмечалась в редких случаях и не оказывала клинически выраженного влияния.

Туджео СолоСтар® – базальный инсулин последнего поколения. Препарат был зарегистрирован в США и ЕС в 2015 году. На данный момент препарат зарегистрирован в 60 странах. В России Туджео СолоСтар® был зарегистрирован в мае 2016 года. В ноябре 2019 применение препарата для детей 6 лет и старше рекомендовал Комитет по лекарственным препаратам для медицинского применения (CHMP) Европейского агентства по лекарственным средствам (ЕМА). В декабре 2019 года Управление по контролю качества пищевых продуктов и лекарственных средств США (FDA) одобрило применение препарата Туджео СолоСтар® (инсулин гларгин 300 ЕД/мл) для лечения сахарного диабета первого и второго типа у детей с 6 лет.

«Инсулин Туджео СолоСтар® (инсулин гларгин 300 ЕД/мл) – представитель второго поколения базальных аналогов инсулина, который уже в течение нескольких лет применяется для лечения сахарного диабета у взрослых в России и многих других странах. Накоплено большое количество научных данных по применению препарата как в клинических исследованиях, так и в реальной практике. Изучение использования новых инсулинов в детской популяции особенно важно для оценки их безопасности и возможностей применения с учетом клинических особенностей течения сахарного диабета у детей и подростков. Результаты исследования EDITION Junior, первого сравнительного исследования инсулина гларгин 300 ЕД/мл с инсулином гларгин 100 ЕД/мл в детской популяции, позволяют расширить арсенал средств по лечению сахарного диабета у детей и возможности врача по индивидуальному подбору терапии», – отметила Елена Лунина, медицинский руководитель бизнес-подразделения «Общая Медицина» Санофи в Евразии.

Все стадии производства (за исключением производства фармацевтической субстанции) препарата Туджео СолоСтар® осуществляются в Российской Федерации на заводе ЗАО «Санофи-Авентис Восток» в Орловской области. Фармацевтическая субстанция производится на заводе Санофи во Франкфурте, Германия.

Источники:

1 Сайт Государственного реестра лекарственных средств. [Электронный ресурс] 07 февраля 2020 г. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=424c4ad4-27fe-44e0-ad39-6b840d1de94c&t=

Читайте также:  Рецепт ужин при диабете 2 типа

2 Викулова О.К., Дедов И.И., Шестакова М.В., Железнякова А.В., Исаков М.А. Атлас регистра сахарного диабета РФ. Том 22, спецвыпуск 2. 2019. https://dia-endojournals.ru/dia/article/view/12208/9338

3 Инструкция по медицинскому применению препарата Туджео СолоСтар®. РУ ЛП-003 653 от 30.05.2016

4 Danne T et al.., Diabetes Care 2020;43:1512-1519 | https://doi.org/10.2337/dc19-1926.

Источник

Сахарный диабет – заболевание, приводящее к пожизненным инъекциям инсулина, инвалидности и фатальным осложнениям. Ученые из Приволжского исследовательского медицинского университета (ПИМУ) приступили к разработке принципиально нового метода лечения этого недуга.

Чтобы понять механизм технологии, нужно сказать о том, как работает поджелудочная железа, отчего возникает диабет. В этом органе есть так называемые бета-клетки, объединенные в островки, которые автоматически продуцируют инсулин в ответ на повышение уровня глюкозы в крови. При ряде аутоиммунных или хронических болезней общая их масса снижается, появляются функциональные нарушения в виде недостаточной выработки инсулина. Результат – повышение уровня глюкозы в сыворотке крови.

– Это инсулинопотребный сахарный диабет. Он возникает, если число островков уменьшилось на 80 процентов, – рассказывает заведующий кафедрой факультетской хирургии и трансплантологии, главный внештатный трансплантолог минздрава Нижегородской области Владимир Загайнов.

Ученый подчеркивает, что метод лечения диабета только один – трансплантация поджелудочной железы. Потребность в этой операции в России удовлетворяется на тысячные доли процента, что связано с дефицитом донорских органов. Во всех остальных случаях речь идет о компенсации заболевания с помощью инсулина. Однако даже пересадка сопряжена с необходимостью иммуносупрессивной терапии, чтобы организм пациента не отторгал донорский орган. А у нее есть свои минусы, особенно в отдаленном периоде.

Главная идея проекта – пересадка не всей поджелудочной железы, а только островков, состоящих из тех самых бета-клеток.

– Островки будут выделяться из донорской железы специальным способом. Даже если целая железа не годится для трансплантации, из нее можно попытаться выделить островки и пересадить их, – поясняет Владимир Загайнов.

В мире эту идею пытаются реализовать разными способами и с разной степенью успешности. Введение островков от донора требует все той же небезопасной иммуносупрессивной терапии. В ПИМУ ученые разрабатывают вариант пересадки клеток, заключенных в специальные пористые капсулы. В теории клетки приживаются и начинают вырабатывать инсулин. Человек излечивается от диабета. А поры капсулы достаточно малы, чтобы предотвратить атаку иммунных клеток организма, поэтому никакой иммуносупрессивной терапии не требуется. Важно, что речь идет о малоинвазивных операциях, а не о сложной трансплантации. Возможных вариантов несколько: введение в брюшную полость путем пункции либо введение в печень по воротной вене.

Первые эксперименты ученых из НИИ экспериментальной онкологии и биомедицинских технологий ПИМУ вместе с Институтом металлоорганической химии РАН оказались успешными.

– В отдаленной перспективе планируем проработать выращивание бета-клеток из стволовых, – говорит Владимир Загайнов. – Параллельно вместе с коллегами из Национального медицинского исследовательского центра трансплантологии и искусственных органов имени Шумакова занимаемся легитимизацией технологии. Раньше в России за это никто не брался, поэтому трансплантация островков бета-клеток поджелудочной пока не вошла в список разрешенных, хотя в мире это уже существует. Надеемся, что в ближайшее время вопрос будет решен.

Планируем проработать выращивание бета-клеток из стволовых

В 2022 году проект, выполняемый по госзаданию Минздрава России, завершится. Можно будет испытывать метод на животных, а затем заниматься регистрацией. На мой вопрос, когда лечение будет доступно российским пациентам, профессор Загайнов ответил кратко:

– Деклараций в жизни хватает, давайте заниматься делом.

Комментарий

Ольга Занозина, доктор медицинских наук, заведующая отделением эндокринологии Нижегородской областной больницы имени Семашко:

– Наряду с совершенствованием самих инсулинов, способов их введения в организм пациента, улучшением терапевтического обучения больных сахарным диабетом развивается и другое направление – трансплантационные технологии, позволяющие вводить бета-клетки островков поджелудочной железы, которые вырабатывают инсулин, в организм больного человека.

Положительный эффект достигается при виртуозном заборе, хранении и введении островковых клеток больному человеку. При успешном результате – почти полный контроль за гликемией, отсутствие гипогликемий и потребности в экзогенном инсулине. Вся эта работа требует ювелирного мастерства.

Источник

На 80-й сессии ежегодного конгресса Американской диабетической ассоциации (ADA 2020) представили результаты недавних исследований по диабетологии. В частности, были освещены такие темы, как распространенность диастолической дисфункции среди молодых людей с диабетом в США, сравнение эффективности ингибиторов SGLT2 и агонистов рецепторов ГПП-1 для пациентов с диабетом и потенциал высокочастотной стимуляции спинного мозга для облегчения боли при диабетической нейропатии.

В США среди молодых людей с диабетом распространена диастолическая дисфункция

Согласно мнению экспертов из Медицинского центра детской больницы Цинциннати (Cincinnati Children’s Hospital Medical Center), в США практически половина подростков и молодых людей с сахарным диабетом 1-го типа (СД1) или сахарным диабетом 2-го типа (СД2) имеют диастолическую дисфункцию, являющуюся прямым предшественником сердечной недостаточности (СН).

Для анализа были использованы данные из 4 центров США по пациентам с СД1 или СД2, включенным в исследование for Diabetes in Youth, которые в течение 2016 – 2019 гг. прошли допплерографию тканей. Средняя продолжительность заболевания диабетом у участников составляла 10,9 года. Диастолическая дисфункция у пациентов определялась нарушением показателей объема диастолического наполнения левого желудочка (ЛЖ), давления наполнения ЛЖ и скорости митрального клапана. Из 458 участников исследования 255 имели СД1 (средний возраст 21,2 года; 60,8% – белые, неиспаноязычного происхождения; 54,1% – женщины; средний уровень А1с – 9±1,9%), а 203 страдали СД2 (средний возраст 24,3 года, 24,1% – белые, неиспаноязычного происхождения; 75,4% – женщины; средний А1с – 9,6±3%).

Читайте также:  Болеющим на сахарный диабет санатории

В результате у участников с СД2 обнаружили худший профиль сердечно-сосудистого риска (выраженный более высокими показателями индекса массы тела, систолического и диастолического артериального давления, уровня триглицеридов, ХС ЛПНП и A1c, а также более низким уровнем ЛПВП), по сравнению с пациентами с СД1. Кроме того, у испытуемых с СД2 также зафиксировали более низкие показатели объема наполнения ЛЖ, скорости митрального клапана и более высокое давление ЛЖ. Вместе с тем, нескорректированная частота диастолической дисфункции была высокой в обеих группах (57,7% при СД2 против 47,2% при СД1).

Результаты исследования указывают на необходимость наблюдения за молодыми людьми с диабетом на предмет развития у них сердечно-сосудистых осложнений.

Эксперты сравнили эффективность ингибиторов SGLT2 с агонистами рецепторов ГПП-1 для пациентов с диабетом

По данным наблюдательного исследования в реальных условиях, проведенного экспертами из компании Humana, у пациентов с сахарным диабетом 2-го типа (СД2), которым назначают ингибиторы натрий-глюкозного котранспортера 2-го типа (SGLT2), зарегистрированы лучшие показатели приверженности к лечению, меньшее число обращений за медицинской помощью и более низкие расходы на медицинскую помощь, по сравнению с теми, кто использует агонисты рецепторов глюкагоноподобного пептида-1 (ГПП-1).

В ходе исследования были проанализированы сведения из базы данных Humana Re для выявления пациентов с СД2, которым недавно назначили ингибиторы SGLT2 или агонисты рецепторов ГПП-1 в период с января 2015 по июнь 2017 года. Возраст участников исследования составил 19-89 лет. В каждой из групп, проходящих лечение (либо ингибиторами SGLT2, либо агонистами рецепторов ГПП-1), было по 5507 пациентов.

Установили, что участники, которым назначили терапию агонистами рецепторов ГПП-1, были более склонны прекратить свое лечение, были подвержены более высокому риску госпитализации и с большей вероятностью обращались в отделения неотложной помощи, чем пациенты, принимавшие ингибиторы SGLT2. Кроме того, прием агонистов рецепторов ГПП-1 ассоциировался с более высокими медицинскими и фармацевтическими затратами по сравнению с использованием ингибиторов SGLT2.

Однако совокупный риск первичного сердечно-сосудистого исхода (инфаркта миокарда, инсульта или летального исхода) и вторичного сердечно-сосудистого исхода (сердечной недостаточности или смерти) был схожим среди участников обеих групп.

Высокочастотная стимуляция спинного мозга может облегчить боль при диабетической нейропатии

По данным экспертов из компании Nevro, высокочастотная стимуляция спинного мозга оказывает эффективное воздействие на облегчение боли у пациентов с диабетической нейропатией.

В исследовании SENZA-PDN приняли участие люди с болезненной диабетической нейропатией. При этом, 103 пациентов рандомизировали для прохождения традиционного медицинского лечения, а 113 участникам наряду с такой терапией также провели имплантацию стимулятора спинного мозга. Средний возраст участников равнялся примерно 61 годам, и около двух третей пациентов составили мужчины. На момент включения в испытание все пациенты испытывали боль в нижних конечностях со средней интенсивностью не менее 5 из 10 см по визуальной аналоговой шкале (VAS).

Через 3 месяца после стимуляции спинного мозга у 79% участников, которым осуществили имплантацию устройства, зарегистрировали ответную реакцию, выраженную снижением боли на 50% или более, а также отсутствием ухудшения неврологических симптомов, связанных с болезненной диабетической нейропатией. Для сравнения: лишь 5% участников, которым назначили только традиционное медицинское лечение, добились такого же результата.

Средний показатель интенсивности боли по шкале VAS среди пациентов, которым осуществили имплантацию стимулятора спинного мозга, снизился с 7,6 в начале исследования до 2,4 спустя 1 месяц и 1,7 спустя 3 месяца. Что касается участников, следовавших обычной терапии, этот показатель равнялся 7 в начале испытания, затем сократился до 6,7 спустя 1 месяц и составил 6,5 через 3 месяца.

Улучшение качества жизни, связанное с качеством сна и активной жизнедеятельностью, также было более заметным через 3 месяца в группе участников, прошедших стимуляцию спинного мозга.

Источник

https://ria.ru/20200819/1575994901.html

Американские ученые создали клетки для лечения диабета

Американские ученые создали клетки для лечения диабета – РИА Новости, 19.08.2020

Американские ученые создали клетки для лечения диабета

Исследователи из американского Института биологических исследований Солка сообщили, что им удалось создать человеческие клетки, которые производят инсулин и не… РИА Новости, 19.08.2020

2020-08-19T18:00

2020-08-19T18:00

2020-08-19T20:00

наука

биология

диабет

здоровье

открытия – риа наука

сша

/html//[@name=’og:title’]/@content

/html//[@name=’og:description’]/@content

https://cdn24.img.ria.ru/images/07e4/08/13/1575987701_0:129:1392:912_1920x0_80_0_0_577aab4bd516e100a043854132346bcf.jpg

МОСКВА, 19 авг – РИА Новости. Исследователи из американского Института биологических исследований Солка сообщили, что им удалось создать человеческие клетки, которые производят инсулин и не вызывают иммунного отторжения при трансплантации пациентам с сахарным диабетом. Результаты исследования опубликованы в журнале Nature.Диабет первого типа – пожизненное заболевание, которое сложно контролировать даже с помощью автоматических устройств, доставляющих инсулин для регулирования уровня сахара в крови. На протяжении десятилетий исследователи искали способ восполнить нерабочие клетки поджелудочной железы.Решением могла бы стать пересадка бета-островков поджелудочной железы – скоплений клеток, вырабатывающих инсулин и другие гормоны. Но донорские клетки вызывают реакцию отторжения и требуют от пациентов приема иммунодепрессантов в течение всей жизни, что сопряжено с серьезным риском инфекций.Используя технологию стволовых клеток, ученые из Института Солка создали первые инсулин-продуцирующие кластеры клеток поджелудочной железы, способные восстанавливать гомеостаз глюкозы без иммунного отторжения после трансплантации. Действие их было успешно проверено на диабетических мышах.”Большинство диабетиков первого типа – дети и подростки. Это заболевание, с которым исторически трудно справиться с помощью лекарств, – приводятся в пресс-релизе института слова руководителя исследования Рональда Эванса, заведующего кафедрой молекулярной биологии и биологии развития. – Теперь мы надеемся, что регенеративная медицина в сочетании с иммунной защитой может реально изменить ситуацию в этой области, заменив поврежденные клетки созданными в лаборатории кластерами человеческих островков, которые производят нормальные количества инсулина по запросу организма”.В предыдущем исследовании авторам уже удалось создать бета-подобные клетки из стволовых. Эти клетки обладали способностью вырабатывать инсулин, но у них не хватало на это энергии. Впоследствии ученые обнаружила генетический переключатель, называемый ERR-гамма, который при включении “заряжает” клетки.”Когда мы добавляем ERR-гамма, клетки получают энергию, необходимую для выполнения своей работы, – говорит еще один автор исследования Майкл Даунс (Michael Downes), старший научный сотрудник Инстиута Солка. – Эти клетки здоровы и крепки и могут доставлять инсулин, когда чувствуют высокий уровень глюкозы”.Важнейшей частью нового исследования была разработка способа выращивания трехмерных островков бета-подобных клеток, приближенных по форме к поджелудочной железе человека. В итоге ученые получили так называемые островковые органоиды человека HILO (human islet-like organoids), готовые для пересадки.Для защиты от иммунного отторжения авторы задействовали белок контрольной точки PD-L1, используемый в ряде иммунотерапевтических препаратов от рака.”Экспрессируя PD-L1, который действует как иммунный блокатор, трансплантированные органоиды могут скрываться от иммунной системы”, – объясняет первый автор статьи Эйдзи Йошихара (Eiji Yoshihara), бывший сотрудник лаборатории генной экспрессии Инстиута Солка.Йошихара разработал метод индукции PD-L1 в HILO короткими импульсами гамма-белка интерферона.”Это первое исследование, показывающее, что можно защитить HILO от иммунной системы без генетических манипуляций, – подчеркивает Даунс. – Если мы сможем оформить это как терапию, пациентам не нужно будет принимать иммунодепрессанты”.Авторы отмечают, что прежде чем выводить систему на клинические испытания, нужно провести дополнительные исследования. В частности, пересаженные органоиды необходимо тестировать на мышах в течение более длительных периодов времени, чтобы подтвердить их продолжительный эффект и гарантировать безопасность для людей.

Читайте также:  Диета при сахарном диабете 2 ого типа

https://ria.ru/20200817/1575907492.html

https://ria.ru/20200721/1574655184.html

сша

РИА Новости

internet-group@rian.ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

internet-group@rian.ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs//copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

internet-group@rian.ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn24.img.ria.ru/images/07e4/08/13/1575987701_3:0:1390:1040_1920x0_80_0_0_a05f9d24d0c1f3461ae1c00aecd2c129.jpg

РИА Новости

internet-group@rian.ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

internet-group@rian.ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

биология, диабет, здоровье, открытия – риа наука, сша

18:00 19.08.2020 (обновлено: 20:00 19.08.2020)

МОСКВА, 19 авг – РИА Новости. Исследователи из американского Института биологических исследований Солка сообщили, что им удалось создать человеческие клетки, которые производят инсулин и не вызывают иммунного отторжения при трансплантации пациентам с сахарным диабетом. Результаты исследования опубликованы в журнале Nature.

Диабет первого типа – пожизненное заболевание, которое сложно контролировать даже с помощью автоматических устройств, доставляющих инсулин для регулирования уровня сахара в крови. На протяжении десятилетий исследователи искали способ восполнить нерабочие клетки поджелудочной железы.

Решением могла бы стать пересадка бета-островков поджелудочной железы – скоплений клеток, вырабатывающих инсулин и другие гормоны. Но донорские клетки вызывают реакцию отторжения и требуют от пациентов приема иммунодепрессантов в течение всей жизни, что сопряжено с серьезным риском инфекций.

Используя технологию стволовых клеток, ученые из Института Солка создали первые инсулин-продуцирующие кластеры клеток поджелудочной железы, способные восстанавливать гомеостаз глюкозы без иммунного отторжения после трансплантации. Действие их было успешно проверено на диабетических мышах.

“Большинство диабетиков первого типа – дети и подростки. Это заболевание, с которым исторически трудно справиться с помощью лекарств, – приводятся в пресс-релизе института слова руководителя исследования Рональда Эванса, заведующего кафедрой молекулярной биологии и биологии развития. – Теперь мы надеемся, что регенеративная медицина в сочетании с иммунной защитой может реально изменить ситуацию в этой области, заменив поврежденные клетки созданными в лаборатории кластерами человеческих островков, которые производят нормальные количества инсулина по запросу организма”.

В предыдущем исследовании авторам уже удалось создать бета-подобные клетки из стволовых. Эти клетки обладали способностью вырабатывать инсулин, но у них не хватало на это энергии. Впоследствии ученые обнаружила генетический переключатель, называемый ERR-гамма, который при включении “заряжает” клетки.

“Когда мы добавляем ERR-гамма, клетки получают энергию, необходимую для выполнения своей работы, – говорит еще один автор исследования Майкл Даунс (Michael Downes), старший научный сотрудник Инстиута Солка. – Эти клетки здоровы и крепки и могут доставлять инсулин, когда чувствуют высокий уровень глюкозы”.

Важнейшей частью нового исследования была разработка способа выращивания трехмерных островков бета-подобных клеток, приближенных по форме к поджелудочной железе человека. В итоге ученые получили так называемые островковые органоиды человека HILO (human islet-like organoids), готовые для пересадки.

Для защиты от иммунного отторжения авторы задействовали белок контрольной точки PD-L1, используемый в ряде иммунотерапевтических препаратов от рака.

“Экспрессируя PD-L1, который действует как иммунный блокатор, трансплантированные органоиды могут скрываться от иммунной системы”, – объясняет первый автор статьи Эйдзи Йошихара (Eiji Yoshihara), бывший сотрудник лаборатории генной экспрессии Инстиута Солка.

Йошихара разработал метод индукции PD-L1 в HILO короткими импульсами гамма-белка интерферона.

“Это первое исследование, показывающее, что можно защитить HILO от иммунной системы без генетических манипуляций, – подчеркивает Даунс. – Если мы сможем оформить это как терапию, пациентам не нужно будет принимать иммунодепрессанты”.

Авторы отмечают, что прежде чем выводить систему на клинические испытания, нужно провести дополнительные исследования. В частности, пересаженные органоиды необходимо тестировать на мышах в течение более длительных периодов времени, чтобы подтвердить их продолжительный эффект и гарантировать безопасность для людей.

Источник